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SUMMARY

The theoretical development of a simple and consistent technique for removing
the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formu-
lation of the velocities in an imaginary infinite extension of the real wind-tunnel
flow is obtained and evaluated on a closed contour dividing the real and imaginary
flow., The contour consists of the upper and lower effective wind-tunnel walls (wall
plus boundary-layer displacement thickness) and upstream and downstream boundaries
perpendicular to the axial tunnel flow. The resulting integral expressions for the
streamwise and normal perturbation velocities on the contour are integrated by assum-
ing a linear variation of the velocities between data-measurement stations along the
contour., In an iterative process, the velocity components calculated on the upper
and lower boundaries are then used to correct the shape of the wall to remove the
interference., Convergence of the technique is shown numerically for the cases of a
circular cylinder and a 1lifting and nonlifting NACA 0012 airfoil in incompressible
flow. When starting from straight walls, convergence is achieved in three or four
iterations if a relaxation factor of 0.25 is used when applying the predicted wall
changes. Experimental convergence at a transonic Mach number is demonstrated by
using an NACA 0012 airfoil at zero lift, Convergence of the experiment to within
the wall-resolution capacity is achieved within three or four iterations.

INTRODUCTION

Because of the presence of the wind-tunnel walls, the flow about a model in a
wind tunnel is constrained from that which would be experienced in the flow of free
air about the same model., The experimental data acquired during a wind-tunnel test
must then be adjusted (or corrected) in some manner to remove the effects of the
wind-tunnel walls and, thus, give a valid representation of an unconstrained flow
about the model. In the past, this has been attempted both empirically and theoreti-
cally. An example of an empirically derived correction in solid-wall wind tunnels
would be to test two or more sizes of the same model in the wind tunnel to determine
an appropriate ratio of model size to tunnel size for small wall effects. Likewise,
in ventilated tunnels the wall-openness ratio for low interference may be determined
by varying model size and tunnel-wall openness. The aforementioned empirical correc-
tions are highly dependent on configuration and flow condition and, thus, are expen-
sive in both time and money. Theoretical corrections have been developed and applied
to help remove the empiricism. (See refs, 1 and 2.) When testing under modest wind-
tunnel flow conditions, these classical corrections are uncertain; however, when
testing under adverse conditions (i.e., high Mach number or low Mach number with high
1ift), they are unreliable,

To circumvent the required application of corrections to wind-tunnel data, the
effective wind-tunnel wall, defined as the actual tunnel wall plus the boundary
layer, may be contoured to the shape of the free-air streamlines about the wodel.
Thus, a free-air test environment surrounds the model. The apparent fallacy of this
approach is that it requires knowledge of the answer prior to the test,

In the early 1940's, Preston, et al., at the National Physical Laboratory,
England, designed and tested a wind tunnel equipped with walls which could be
adjusted to follow the streamlines about an airfoil model. (See refs, 3 and 4.)



These researchers defined an approximate method to adjust the walls which was based
on singularities in the potential flow. Needless to say, their efforts, though
notable, were not very successful because of the lack of theoretical development and

numerical computational ability.

Kroeger and Martin (ref. 5) presented an approach for streamline modification to
V/STOL wind tunnels in 1967. An analytical calculation was made and then a louvered
wall was adjusted to provide aerodynamic relief to reduce the interference in the
vicinity of the model. 1In 1972, Lo published a paper (ref. 6) which described a
theoretical technique for reducing interference by applying an analytically obtained
porosity distribution to the wind-tunnel walls prior to data acquisition. The poros-
ity distribution calculated was a function of Mach number and, at least theoreti-
cally, allowed the streamwise gradient of 1lift interference to be removed and the
blockage to be reduced.

In 1973, a method was proposed by which the streamline pattern around any object
in a wind tunnel could be matched with that resulting from free air flow about the
same object. This method, proposed by Ferri and Baronti (ref. 7) and also indepen-
dently by Sears (ref. 8), is described as follows: an imaginary flow, satisfying the
same free-stream reference as the real flow in the wind tunnel, is assumed to exist
outside the physical boundaries of the wind tunnel., For unrestricted, interference-
free flow to exist, the boundary conditions at the interface between the real and
imaginary flows (the effective wind-tunnel wall) must be such that the boundary con-
ditions governing the total flow (real plus imaginary) are those associated with free
air, that is, the unperturbed conditions at infinity plus the conditions imposed on
the test model. This is another way of stating that the imaginary flow is a continu-
ous extension of the real flow to infinity. If two properties of the real flow are
known at the wind-tunnel boundary, such as the pressure and streamline slope or the
pressure and mass-flow rate, then one of the quantities may be used with the boundary
condition at infinity to define the imaginary flow field. After this has been accom-
plished, the remaining quantity may be calculated analytically and compared with the
experimentally determined value as a consistency check for the continuous exten-
sion of the real flow. If the two quantities match, the test model is in a free-air
environment; if not, modifications to the real flow are made at the wind-tunnel
boundary and the process is repeated until convergence to the free-air condition is

achieved.

The aforementioned wall-interference reduction and/or elimination method pre-
sented has been implemented at several different research organizations around the
world. Beginning in 1971, the Calspan Corporation started the development of an
experimental wind tunnel to test the Ferri-Sears concept. Their tunnel was a two-
dimensional-airfoil facility equipped with many plenum chambers along the upper and
lower porous walls, The streamline contour was adjusted by varying the mass flow
through the different plenum chambers. Results of their experiments presented in
reference 9 showed convergence to near free air in about three successive iterations
on the wall-control variables. Reference 9 also detailed some of their theoretical
and numerical analyses along with their iterative method. Tunnel design and flow-
field measurements were also discussed. Reference 10 discussed the extension of the
Calspan work to high transonic Mach numbers and also the beginning of an investiga-
tion of a three-dimensional wind-tunnel design.

A test section with solid flexible walls was installed in the French ONERA S4LCh
wind tunnel (refs. 11 and 12) and was successfully used to remove wall-interference
effects by controlling the streamline slope. The slope was integrated to give the
streamline-shaped wall location. The French tests were conducted at transonic Mach
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numbers under lifting and nonlifting conditions. Consideration was given to three-
dimensional tunnels having solid flexible walls.

Another very extensive study, involving the University of Southampton, England,
and the Langley Research Center, investigated the use of solid flexible walls for
both low-speed and transonic wind tunnels., (See refs. 13 to 16.) The results of the
low-speed studies (ref. 16) have been very encouraging with convergence in three or
four iterations at any airfoil angle of attack when starting from straight (unstream-
lined) walls and usually with convergence in one or two iterations when starting from
a known solution at one angle of attack and moving to another angle of attack. (See
ref, 15.) Theoretical studies of convergence, finite test-section effects, etc.,
were reported in reference 17. The use of the flexible-wall tunnel in other modes of
operation is discussed in references 14 and 16. Among these are infinite flow field,
cascade, ground effect, and steady pitching modes, thus indicating the utility and
versatility of an adaptive-wall wind tunnel.

One of the main reasons for using the adaptive-wall principle, in addition to
the reduction in interference that it offers, is the increase in test Reynolds number
attainable because of the allowable increase in model size with respect to tunnel
size and, correspondingly, the decrease in power requirements at a given Reynolds
number, The Southampton tunnel, for instance, has a chord-height ratio of 0.90 and a
tunnel height-width ratio of 0,50. The other tunnels cited have chord-height ratios
of about 0.50 and height-width ratios of 1.20 or less., Typical two-dimensional-
airfoil tunnels have chord-height ratios and height-width ratios of 0.33 or less and
3 or greater, respectively. Wolf and Goodyer (ref. 16) cited a possible problem area
in adaptive-wall tunnel design by making the chord-height ratio too large. They
attributed the disparity between their results and essentially interference-free
results to a flexible-wall—boundary-layer interaction with the airfoil wake at large
airfoil angles of attack.

In each of the aforementioned investigations of two-dimensional-airfoil tunnels
with adaptive walls, the imaginary flow fields have been determined as two separate
calculations on the upper and lower domains exterior to the upper and lower wind-
tunnel walls. This manner of handling the iteration procedure decouples the calcula-
tions for opposing walls but does not decouple the effects of changes made to one
wall on the opposing wall. Thus, excessive oscillation between walls can and does
occur in the iteration procedure if the walls are not allowed to "communicate." In
order to reduce the wall oscillation and, thus, the number of iterations, Wolf and
Goodyer (ref, 15) introduced a correction method which summed a certain percentage of
the movement of each of the opposing walls at each axial tunnel station., Likewise,
to control the overshoot in the Calspan prediction, Sears (ref. 8) suggested applying
only a percentage of the indicated wall change. Vidal, et al., (ref. 9) report that
empirically determined relaxation factors of 0.25 were used.

As indicated previously, studies were made with independent calculations for the
imaginary flow fields exterior to the upper and lower walls of the two-dimensional
wind tunnel which decoupled the adjustment of the walls. Even though Chevallier
(ref. 11) proposed that the imaginary flow should be calculated for a region exterior
to a box containing the wind tunnel and that information obtained along the complete
box contour be used for the calculation, he indicated in reference 12 that this pro-
cedure was not used and that separate upper and lower calculations were made., Fach
of these imaginary flows are determined on the half-plane, and they require informa-
tion on boundaries extending to positive and negative infinity. Since the required
information exists only along that portion of the boundary occupied by the wind tun-
nel, extrapolation of the known wall behavior must be made to satisfy the boundary



conditions., This procedure introduces an error of unknown magnitude into the itera-~
tion process. Analyses of the probable size of this error are given in refer-
ences 12, 17, and 18.

The purpose of the present report is to present a coupled analytical and experi-
mental method for eliminating the interference effects of the upper and lower wind-
tunnel walls on an airfoil tested in a typical two-dimensional transonic wind tunnel
with solid flexible floor and ceiling boundaries. BAn integral representation for the
induced velocity along the wind-tunnel wall is developed and is evaluated by using
data obtained on a closed contour composed of the upper and lower walls and upstream
and downstream boundaries surrounding the model. BAn iterative technique is developed
and experimental verification of the method is made for a nonlifting airfoil. A com-
parison is made with near-interference-free data and also with two different numeri-
cal simulations of the wind-tunnel geometry.

The theoretical and experimental investigation presented in this report was
begun in early 1976 and was completed in 1977. The literature survey presented is
indicative of the state of the art of adaptive-wall technology at the time of the
investigation and does not include recent advances. When this work was completed, it
was one of the first transonic adaptive-wall solutions and the only adaptive-wall
theory applying Cauchy integral techniques. Between the time of completion of the
test program and this publication, many advances have been made and similar theoreti-
cal approaches have been reported, The recent work of Kraft (ref. 19) is notable
among the applications of the Cauchy integral techniques. Kraft applied the Cauchy
integral to the interior of the wind tunnel to obtain expressions for the inter-
ference velocities, whereas the technique reported herein applies the Cauchy integral
to the exterior of the wind tunnel to determine corrections to the wall boundary con-
dition. A survey of past experience and recent technology applicable to adaptive
walls was given at an AGARD symposium on "Wall Interference in Wind Tunnels" in

May 1982,
SYMBOLS

A cross-sectional area of wind tunnel, in?
By rBprAp

B;,Bp,Bp coefficients of discretized velocity integrals (where i = 1,2,3 and
C;+CpiCp j=1,2)
D. .

37 B

CP pressure coefficient
C chord
<, section 1lift coefficient
Cn section pitching-moment coefficient
C11C9¢Cq different branches of contour of integration
F analytic function

11,12,13 definite integrals



AC )

5*

imaginary number, Q:?

wall length between two data-measurement stations, in.

Mach number

number of measurement stations

running variable along wind-tunnel wall between measurement stations, in,
distance along singular strip to wall singularity, in.

location along wind-tunnel wall where a measurement station occurs, where
3 =1 ton, in,

Cauchy principal value

quantity defined by equation (A27)

radial distance defined in figure 1, in.

Reynolds number based on chord

Reynolds number based on x

Reynolds number based on §*

distance from control point to running point of integration, in,
running coordinates

complex velocity, ft/sec

free-stream velocity, ft/sec

complex velocity evaluated on ¢y, ft/sec

x and y perturbation-velocity components, irespectively, ft/sec
Cartesian coordinates in transformed plane

Cartesian coordinates in real plane

imaginary variable, x + iy

compressibility factor, 1 - Mg

ratio of specific heats

change in ( )

boundary-layer displacement thickness, in,

incremental limiting distance, in.



N & coordinate difference defined by equations (16) and (15), respectively

0 local wall slope, dy/dx, rad
p dummy variable of integration

T angle defined in equation (10), rad

¢ transformed perturbation-velocity potential )
¢r real perturbation-velocity potential
Subscripts:

c singular point

i,J indices of points, panels, etc,

o reference condition

r real flow

® free stream

Abbreviation:

rms root mean square

A prime indicates an arbitrary point on the contour,

PROBLEM FORMULATION

This report presents a method for reducing or removing the interference effects
of the upper and lower walls of a two-dimensional wind tunnel., 1In this report, only
the case of a steady, fully developed, two-dimensional fluid flow over an airfoil in
a typical airfoil wind tunnel is considered., Although an airfoil is specified, the
method is general enough that any two-dimensional object should not be excluded as
long as restrictions (which are to be stated) are not violated.

The upper and lower wind-tunnel walls have a finite number of stations at which
the vertical location of the wall can be controlled. The wall is assumed to be thin
and flexible so that intermediate locations between the adjustment stations approxi-
mate a spline curve. If the wall approximates a streamline about the airfoil, the
wall curvatures will not be excessive,

The effects of viscosity are considered to be confined to the region immediately
adjacent to the four walls of the wind tunnel within the displacement thickness of
the wall boundary layer. Viscous effects on the airfoil are unimportant to the
analysis, except with regard to the relationship that they have with the development
of the wake behind the airfoil., Since the thickness of the wake is generally small
compared to the height of the tunnel, the viscous effects of the wake are not consid-
ered here,



The formation of shocks in the flow field within the wind tunnel is allowable;
however, no provision is made for shock impingement on the upper and lower wind-
tunnel walls. The method extends the real flow within the tunnel to infinity by
introducing an imaginary flow exterior to the tunnel. The imaginary portion of the
flow field is assumed to be isentropic even though shock waves may exist in the
real flow., It is shown (ref., 20) that the terms affected by this assumption are of
higher order than those to be considered in this analysis. Because of the isentropic
assumption and the nature of the analysis, the equation governing the imaginary flow
is taken as

2 azgr 62¢r
(1 - M) >+ > = 0] (1)
ox oy
r r

where ¢, is the small perturbation-velocity potential and M, is the free-stream
Mach number., This is the linearized, two-dimensional, compressible~flow equation.
The X, coordinate is measured axially in the tunnel. The vy coordinate is
measured in the vertical direction. Boundary conditions for tﬁe real flow are the
usual conditions of zero normal velocity at the airfoil surface and either the
pressure or streamline slope at the effective walls of the wind tunnel. Boundary
conditions for the imaginary flow exterior to the tunnel are the pressure distribu-
tion or streamline slope at the effective walls and vanishing perturbation velocities
at infinity. In order to solve the coupled boundary-value problems consistently,
however, both pressure and streamline slope should be specified.

METHOD OF ANALYSIS
The utilization of the Ferri-Sears concept requires the solution of equation (1)

in the region exterior to the real flow in the wind tunnel. By using the following
Goethert scaling rules:

x =% )
y = By,
u = 2ur> (2)
v = Bvr
¢ = B0,
W,

equation (1) becomes

2 2
M+6_Q=O (3)
2 2
ox oy



Thus, the imaginary flow can be determined by using standard potential-flow
techniques.

Development of Integral Representation of Velocity Field at Boundary
Since the shock waves do not extend to (or beyond) the walls of the wind tunnel,

the function ¢ is assumed to be continuous. Because irrotational flow is assumed,
the velocity components uwu and Vv are obtained from

_ 0¢
u = = (4)
and
- 0¢
VS %y (5)

As a result of the preceding argument, the functions u and v and their deriva-
tives are assumed to be continuous., By appropriate differentiation of equations (4)
and (5), u and v may be shown to satisfy the Cauchy-Riemann conditions and also
the Laplace equation. Thus, they satisfy requirements for harmonic functions. (See
ref., 21.) These functions may then be used to define a new function U(z) which is
analytic (ref. 21) in the domain exterior to the wind tunnel and which also satisfies
the Laplace equation. The function U(z) is given by the expression

U(z) = u(x,y) - i vi(x,y) (6)

In general, if any function F(z) 1is analytic on and within a simple closed
contour such as that represented in figure 1, the Cauchy integral formula (ref. 21)
may be used to determine the value of F(z) at any point =z = x + iy within the
domain. The Cauchy integral formula is given by

F(z) = - SﬁF;F’E ce (7

where 2z 1is the location at which the value of F is desired and p is the dummy

variable of integration. Examination of equation (7) reveals that the determination
of F(z) requires knowledge of the values of F(z) occurring on the boundaries of

the given analytic domain, that is, F(p).

In order to replace F(z) 1in equation (7) with U(z) given in equation (6),
the behavior of u and v on all boundaries must be known. If contour ¢y of
figure 1 is taken as the control surface, then u and v are known measured guanti-
ties. For a flexible-wall tunnel, this surface is taken to be coincident with the
upper and lower effective walls of the wind tunnel and is closed by two planes per-
pendicular to the undisturbed flow in the tunnel, one located ahead of the model and
one behind the model. Boundary data along c, are not required because the influ-
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ence of these data is cancelled. If contour ¢ is taken as the limit of R going
to infinity, then u and v on c will vanish since the perturbations vanish at
infinity. Bquation (7) is then rewritten as:

(g o [0 § o)) el

1 4; U e>_ed
2wl p -z

u(z)

(8)

It is important to note that the region labeled "Singular region" in figure 1 com-
prises the area contained within the effective walls of the wind tunnel and outside
the contour c¢,, The airfoil and tunnel conditions impose a pressure distribution
along the walls of the contour, which gives rise to a perturbation-velocity field,
The exact nature of the flow is unknown. Information is not known or needed on
shock-wave formation, the model test configuration, and conditions of this type.

As stated earlier, equation (8) will give values of the velocity function U(z)
within the analytic domain. In order to obtain values ut(z) on the contour, a
limiting process must be applied to equation (8). Figure 2 shows the contour over
which the limiting process occurs as =z approaches c from the interior and
defines the symbols used in the formulation. Egquation (8), when written over the
contour in figure 2, is

ut(z) = lim [—’. 45 ulp) dp , 1 f ulp) dp (9)
2mi p - 2 2m p -2
e>»0 c1—e €
Using the definition
i<

p-2z = ¢ge (0 < © < w (10)

allows the last integral in equation (9) to be expressed as

+
U d . T i

11m—=— f el do _ lim 1 Ulz + ge” V)dt = U _(2) (11)

p -2z 27 2

>0 0
Then, substituting equation (11) into (9) gives
vt(z) =1 o Ulp) dp (12)
T c p— 2z



for values of U(z) when 2z is on the contour c (the wind-tunnel-wall contour),
that is, U'(z). The real and imaginary portions of ut(z) are obtained by making
the following substitutions into equation (12):

z = x + iy (13)
p=s + it (14) -
E=s - x (15)
n=t -y (16)
r2 = g2 4+ p? (17)

and equation (6). After manipulation, the u and v components of the perturbation
velocity evaluated on the contour c, become, respectively,

oy = Loy 0 -t - vnas e
T (o] r
1
and
v(x,y) =ln CP¢ (uf - vn)ds : (un + vg)dt (19)
C r

1

Note that the superscript + (denoting limiting value on the contour) has been deleted
from u and v for convenience. The results of equations (18) and (19) can be
transformed back to the compressible plane by using equations (2).

Treatment of Boundary Data

The information collected at the control surface C, is usually in the form of
pressure and flow angle. These quantities are converted to the velocities u and

r
vy, by using

2
- =
c  =-2 1-<Y 1>M2 LD R (20)
2
U
«©

10



and

o =T it ' (21)
r U +u_dx
® r r |c
1
h c is th ffici Ay is th £
where p,r 1S e pressure coefficient and gx— is the (assumed small) flow

T |c
1
angle with respect to the free stream at the control surface; that is, Or = tan Or.

Contour Adjustment to Reduce Wall Interference

The Ferri-Sears iteration requires measurement of two flow quantities. One of
these is used to calculate an imaginary extension of the real flow to infinity; the
other is used as a consistency check with its imaginary counterpart. In the present
method, the u and v components of the velocity at the control surface are
obtained from equations (20) and (21) and then are used to evaluate equations (18)
and (19) in order to calculate the streamline slope in the exterior flow, This slope
is integrated to obtain a new wall position, and the calculated value is then com-
pared with the corresponding measured value to determine if continuity exists between
the real and imaginary flows. If a discrepancy exists between the measured and cal-
culated contours, the contour is moved and the process is then repeated. If the
error is reduced to an acceptable level, convergence is declared and the measured
wind-tunnel data should be correct to within definable limits of accuracy.

It is important to note that if changes are made at one location on the wall,
the effects of this change are felt globally in the tunnel unless the change is very
small. Thus, the walls should not be decoupled during exterior-flow calculations.
The present method allows communication between the walls and should tend to reduce
the oscillation present in other methods, although a relaxation of the calculated
correction will most likely have to be applied.

COMPUTER PROGRAM FOR WIND-TUNNEL-WALL ANALYSIS

To apply the analysis of the preceding sections, equations (18) and (19) must be
reduced to a form suitable for numerical solution. Since speed and low cost are
essential during any computer operation occurring while running a wind tunnel, simple
methods must be used. It is assumed that the pressure data obtained on the wall are
dense enough that a linear variation of the velocity components between measurement
stations will reflect their true variation. It is also assumed that the shape of
the wall between the adjustment stations will approximate a spline curve so that any
intermediate wall location and slope may be determined from the spline fit of the
wall ordinates. With these two approximations in the integrands of equations (18)
and (19), the velocity integrals may be simplified and evaluated along strips between
pressure-measurement stations., The effects of each of these strips are then summed
over the entire contour, which results in a value of the induced velocity at each of
the adjustment stations along the effective wind-tunnel-wall contour c,. The dis-
cretization of the equations is shown in detail in the appendix, and a computer pro-
gram called "FLEXWAL" has been written to implement the method.
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RESULTS

The general application of the method was described in the preceding sections,
The specific details of its use will be described in the following sections along
with numerical and experimental verification. The experimental results will be
compared with experimental data and also with a wall shape obtained by a different

method.

Numerical Demonstration of Convergence

The convergence properties of the concept were studied numerically for three
incompressible test cases: a circular cylinder, a nonlifting NACA 0012 airfoil, and
an NACA 0012 airfoil at an angle of attack of 3°, The pressure distribution imposed
along the wind-tunnel walls during the numerical studies was obtained by using the
MAAD computer program described in reference 22. This program solves the inviscid,
incompressible flow field about multielement airfoils using panel methods. To simu-
late walls, one element, which would normally be used for the airfoil, may be wrapped
around the airfoil configuration to be analyzed. Various types of boundary condi-
tions may be prescribed along the different surfaces, and either analysis or design
cases may be computed. The MAAD program produces results in the form of pressure
distributions along the walls and airfoil surface. The force coefficients are
derived from the integration of the pressures.

In each of the test cases the chord-height ratio was chosen as 0.5 to provide a
severe test of the method, and all iterations were started from straight undiverged
walls. Boundary conditions of vanishing normal velocity were prescribed along
the upper and lower tunnel walls and along the airfoil surface. The tunnel walls
were extended far enough upstream and downstream of the model to allow the vertical-
velocity components to be neglected and, thus, a free-stream velocity of unity was
prescribed. Wall pressures generated by the MAAD program and the existing wall shape
were then used as input to the FLEXWAL program. Results from the FLEXWAL program
were in the form of Ay corrections at the wall-adjustment locations. These new
wall locations were then used as input to the MAAD program, and the process was
repeated.

The convergence properties of the method for a circular cylinder are presented
in figure 3. Here, the root mean square (rms) of the predicted wall correction nor-
malized by the rms value of the first prediction is plotted against the iteration
number for various values of wall relaxation, If the full predicted correction is
used, then an unstable situation exists and the method diverges rapidly. However,
if only 25 percent of the correction is applied, the maximum convergence rate is
achieved, This is consistent with the results of reference 9., Figure 4 presents the
wall shapes obtained by using an under relaxation factor of 0.25 of the predicted Ay
correction, Very little change occurs after the third iteration, and essentially no
change occurs after the fourth iteration.

The convergence characteristics were then studied for both a nonlifting and
lifting NACA 0012 airfoil, and the wall results are presented in figure 5. Two
interesting points are noticeable here, First, the convergence of both of these
cases is slower than that of the circular cylinder in figure 3. This is due to the
lack of streamwise symmetry in the pressure distribution as compared with that of
the circular cylinder. Second, the upper and lower walls of the lifting configura-
tion converge at the same rate, Further studies with the method should be conducted
before making any profound statements about the generality of this,
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Convergence of the force coefficients for the lifting airfoil is presented in
figure 6, which shows a comparison with a reference free-air calculation obtained by
removing the walls in the MAAD computer program. It is observed that although the
walls are converged after three or four iterations, the error in force coefficients
is reduced to less than 3 percent by the second iteration.

At this point, it should be noted that the convergence could have been enhanced
if a less severe test case had been chosen. If the chord-height ratio of the tunnel
was more in line with those of typical airfoil tunnels, the velocities induced on
the walls by the airfoil would have been smaller and, thus, the wall corrections
would have been correspondingly less., Also, since all iterations were started from
undiverged walls, the iterations required for convergence would be less if they were
started from, say, a converged 2° angle-of-attack case and were iterated to a con-
verged 3° angle-of-attack case,

Experimental Verification of Convergence

An experimental study of the flexible-wall iteration procedure was conducted in
the Langley 6- by 19-Inch Transonic Tunnel. (See ref. 23,) The wind tunnel is an
atmospheric blowdown facility with 0.,0125-open slotted upper and lower walls. It has
a Mach number range from about 0.2 to 1.2 and a Reynolds number capability of about
3.0 x 106, based on an airfoil chord of 6 in., The airfoil model spans the tunnel and
is mounted rigidly on turntables which are manually rotated to change angle of
attack., A typical test run would consist of a Mach number sweep at a fixed airfoil
angle of attack.

For the present study, the slotted upper and lower walls were removed and
replaced with solid flexible walls extending from 29 in. ahead of to 20 in. behind
the airfoil model, Each wall had 11 manually operated jacking stations equally
spaced at 4-in. intervals, where the wall location could be adjusted to within about
+0.0015 in. of the desired setting. There were 20 center-line pressure orifices
along each upper and lower wall., Tunnel center-line pressure orifices were instal-
led along the sidewall both upstream and downstream of the model, A vertical row of
5 orifices located 30 in. upstream of the airfoil midchord was used as a reference
for the wind-tunnel Mach number.

The model selected for the study was an NACA 0012 airfoil having a 6-in. chord.
The model has 45 pressure orifices distributed equally on the upper and lower sur-
faces with 1 located in the leading edge. The model is mounted between tunnel
stations -3 in. and 3 in. All measurements were obtained at zero angle of attack.
No drag data were obtained during any of the test runs. A schematic drawing of the
facility and the flexible wall is shown in figqure 7.

Corrections to the flexible walls to remove interference were made in three
phases, Phase I was a tunnel-empty boundary-layer correction, In this phase, the
walls were diverged to obtain a level pressure distribution along the tunnel axis.
This was accomplished by using the area-ratio expression

+1

Yy - 1 2\2(y-1)
A _Toflr ¥
I e

13




obtained from one-dimensional gas dynamics, Here, A and M are the local area and

Mach number, respectively, and A, and M, are the upstream reference conditions of
the same quantities, respectively. After the local area change was determined, an
approximate value of the local change in the displacement thickness A8* was calcu-

lated from
6 x 19 A
*x o - —
a8 2(6 + 19) (1 Ao> )

Since the sidewalls of the tunnel are rigid, all corrections were applied equally to
the top and bottom flexible walls., The Ay correction was determined by using

Ay = =22 Asx

The results of this procedure for a Mach number of about 0.71 are presented in fig-
ure 8, in which pressure data obtained along both flexible walls and the tunnel
center line are plotted for the undiverged and diverged tunnel-wall configurations.
It is noted that the walls were diverged for a Mach number of 0.90, but this setting
was equally valid across the Mach number range as shown in figure 9. The tunnel-
empty boundary-layer growth was assumed to vary as

& _a_
X b
X

w

along each wall. The coefficients a and b were determined to have the values of
0.0643 and 1/5, respectively, by empirically matching the measured wall deflections
required to achieve a constant Mach number distribution in the test section. The
corrections are shown in figure 10.

The Phase II wall corrections were modifications to account for model-imposed
pressure—gradient variations of the wall boundary layer. Differentiating the previ-
ously noted expression for §6* will yield

ds*  0.259
dx = _1/4
Ré*

If the pressure-gradient term from the momentum integral equation is added and if the
shape factor is assumed to have the value of 1.4, that is, the value typically
assumed for a flat plate, then a generalized expression of the boundary-layer varia-

tion is given by

4.6* 2, &* du 0.259
& Ao g T
R(S*
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The previous equation was then incorporated into a computer program which solves the
transonic small-disturbance flow about an airfoil., Integration of this equation was
then made along two-dimensional strips on all four of the tunnel walls to obtain the
model-imposed pressure-gradient effects on the displacement thickness, The theoret-
ical viscous modifications of Phase II are also shown in fiqure 10. The corrections
to the flat-plate growth thus obtained were then added to those of Phase I to yield
the effective straight-wall settings, that is, the actual wall location plus the §*
variation due to the model pressure field. Figure 11 presents the results of the
aforementioned wall modification by comparing the airfoil pressure distribution
obtained with the tunnel-empty wall settings with the airfoil pressure distribution
obtained with the effective straight-wall settings at a free-stream Mach number of
0.77. It can be seen that the straight walls force an aftward movement of the shock,
which is indicative of the effects of a closed tunnel.

The final phase (Phase III) consisted of potential-flow corrections in the man-
ner described in the analysis section. The iterations were started from the effec-
tive straight-wall settings, and a Mach number of 0.767, as measured from the
upstream reference, was taken as the free-stream test condition. At this Mach num-
ber, a Reynolds number of about 3.0 x 10® could be obtained in the test facility,
Because a symmetrical nonlifting model was used, the pressures on the upper and lower
walls at each given tunnel station were averaged to reduce experimental scatter in
the data. This gave symmetrical upper and lower wall corrections which are presented
in figure 12. The results identified as 2A represent 12,5 percent of the full cor-
rection predicted from iteration 1. Analysis of the pressure data from 2A with the
FLEXWAL program indicated that ahead of and over the model, an inward movement of the
wall would be required for the next iteration. The results identified as 2B repre-
sent 25 percent of the full correction predicted from iteration 1.

Analysis of the pressure data from 2B with the FLEXWAL program indicated that an
outward movement of the wall over the same region would be required for the next
iteration. Thus, the converged location for most of the wall should lie between that
of iterations 2A and 2B. Based on this, it was decided to interpolate between itera-
tions 2A and 2B by using the actual wall location and the predicted wall changes
from both runs 2A and 2B. The results of this are indicated as iteration 3, It is
seen from figure 12 that there is very little difference in the wall positions
between iterations 2B and 3. The major differences appear to start about 1-chord
length downstream of the model trailing edge and extend to the end of the flexible-
wall test section. It is thought that these discrepancies are the result of the
inefficient dumping of air leaving the test section and flowing into the diffuser and
possibly the result of insufficient control of the walls in this region. A post-test
evaluation of the flexible-wall error analysis is given in the following table:

. Relaxation rms
Iteration factor rms rms)
0 0.08907 1
1 0.250 03295 «36997
2A «125 02316 «26000
2B «250 «02201 «24716
3 Interpolated «01251 «14043
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The walls are converging as found in the numerical example, although not at the opti-
mum rate. (See fig. 3.)

The convergence of the airfoil pressure data is presented in figure 13. It can
be seen that very little difference exists in data obtained from iterations 23, 2B,
and 3., The differences that are present, essentially a very small shift in the shock
location, are within the Mach number and data scatter. Thus, for all practical pur-
poses, convergence is achieved for this test configuration.

COMPARISON OF FINAL RESULTS WITH OTHER DATA

In this section, the final results presented in figures 12 and 13 are compared
with other data and procedures. Figure 14 shows the agreement between the wall shape
obtained by the present method and that obtained by the analytical method of Newman
and Anderson. (See refs. 24 and 25.) Their technique solves the direct, inviscid
boundary-value problem for the free air flow about the shape given by an NACA 0012
airfoil plus its boundary-~layer displacement thickness. The tunnel-wall boundary-
layer correction is then computed in a two-dimensional stripwise sense along all
bounding streamlines and is added to the inviscid streamline displacement to give
the solid contoured tunnel-wall shape. For comparison purposes, all tunnel-wall
boundary-layer displacement effects were added symmetrically to the top and bottom
inviscid wall deflections. It can be seen that there is a substantial difference
between the viscous and inviscid predictions. A splined curve through the actual
tunnel-wall location (viscous flow plus potential-flow corrections) from the present
study is in good agreement with the theoretical viscous prediction over most of the
wall. If the fine detail of the theoretical viscous prediction is walid, then it is
obvious that the wall jacks are too sparse to approximate the required shape. How-
ever, it is very encouraging to see how well the required wall shape is approximated
experimentally. The downstream discrepancy (as stated earlier) occurs because of
the inefficient dumping of the tunnel air into the diffuser and possibly because of

insufficient wall control.

Figure 15 compares the converged airfoil pressure distribution with unpublished
experimental data obtained by J. Osborne of the Royal Aircraft Establishment,
England. Osborne determined the blockage interference on an NACA 0012 airfoil at
zero 1lift in the 36- by 14-inch two-dimensional transonic wind tunnel at the National
Physical Laboratory. During the Osborne test, the wall openness was systematically
varied to determine the correct value in such a way that identical pressures could be
obtained over the 15- to 55-percent chord region of both a 5-in, and a 10-in. model
at identical free-stream Mach numbers, It is seen that the data match reasonably
well over most of the airfoil with the largest difference being at the shock. If the
Osborne data are considered to be correct, then the results of the present study
appear to have been obtained in a wind tunnel which is too open. This is consistent
with the findings presented in figure 14; that is, the location (or slope) of the
wall is not adequately controlled in the immediate vicinity of the shock above the
airfoil because the wall is too open there.

CONCLUDING REMARKS
When the wall-iteration——convergence concepts used in this report were origi-
nally conceived, the computational procedures for modeling the wind-tunnel flow were

not generally available and, thus, verification of the theoretical ideas and wall-
construction geometry was difficult. With the advent of the MAAD computer code, an
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incompressible tool for analysis of the method became available and the convergence
characteristics of the method could be easily studied. It has been shown analyti-
cally and computationally that convergence for the severe case of the ratio of model
chord to tunnel height of 0.5 could be achieved in three or four iterations for
incompressible lifting and nonlifting models when starting from straight undiverged
walls. The number of iterations should be reduced substantially if wall modifica-
tions begin at a previously adapted wall shape and/or if the model-tunnel geometry

is less demanding. 'The method also demonstrated a proper coupling of the upper and
lower tunnel walls contrary to other methods; however, under relaxation of the pre-
dicted wall change is required, and a relaxation factor of 0.25 gave the maximum con-

vergence rate in the numerical examples.

Experimental verification has been demonstrated at a low transonic Mach number
for symmetric flow to within the wall-resolution capabilities in two or three itera-
tions. It is important to note that although the jack spacing on the test wall was
adequate for the inviscid streamline modification, the spacing was unacceptable for
capturing the required fine details because of the boundary-layer variation on the
sidewalls. For the particular test case studied, this lack of boundary-layer defini-
tion appears to have manifested itself in the improper location and strength of the

airfoil shock wave.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
December 22, 1982
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APPENDIX ;

DISCRETIZATION OF PERTURBATION-VELOCITY INTEGRALS

For reference, the perturbation-velocity integral and related expressions are

utx,y) = -1 q>9ﬁ (un + vE)s - (uf - vm)de - ’
C1 r

and

v(x,Y) =ln P ¢ (uf - vn)ds -!2~ (un + vE)dt (a2)

(o4 r i

where

E=8-X%

n=t -y (a3)

r2 _ g2 + 112

The closed path over which the integration occurs is shown in figure 16(a). The
contour is composed of a finite number of discrete points at which information is
known. These data points are denoted by the symbol Pj, where the subscript j is
an index denoting the point being considered. The wall is assumed to be composed of
straight-line segments between successive data points as shown in figure 16(b). The
point labeled with the subscript 1 is the location at which the integrals are

evaluated. The length of each segment is

s.)2 + (t,
J

sa1 tj)2]1/2 (n4)

Ij = [(sj+1 -

By using equation (A4), running coordinates may be established along each segment,
Thus,

s(P') =s. + (s, - s,
J J
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and
P' - Pj
t(P') = t, + (t. - t.)
) J ( J J 1.
]
However, if
P =P - D,
J
then
P
s(P) = sj + (sj+1 - Sj)l.
J
and
P
t(P) = tj + (tj+1 - tj)l.
J
where P varies from 0 for P' = P; to

r P' = Pj+1. Likewise,

(n5)

(n6)

by assuming

. fo
a linear variation in u and v aiong eacﬁ strip, the velocities are written as

P
u(p) = uj + (uj+1 - uj)l_
J
and
P
v(P) = v. + (vj+1 - VJ)Ij

By differentiation of equations (a5) and (A6),

Sigq = S;
3+t J
ds = N ap

j
and
t.oq -t
at —-—1—7————1 ap
3

(n7)

(A8)

(a9)

(a10)
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The expression for
s - x, =

and

Thus,

r%(p) =

By using equations (A7),

obtained:

(s - x.)u

1

(t - y.)u

(s - x.)v

20

P
-(y; - tj) + (tj+ - t.)—

—uj(xi - sj) + [(sj+
-u, . - t. t.
uj(yl J) + [( 3+

-vj(xi - sj) + [(sj

- s vy,, - v.)<P—

1.

-v_ (y. - t. t.
vj(yl 3) + [ i+

APPENDIX

is developed by using

P
-(xi - sj) + (s, - 8.)—

+1 1.
J J j

1 1,
J J

P
-t )]— + P2
37

1 .
J
(A11), and (A12),

1

P

sy mosyiluy,, - “j)<1.

1

P
R RAL uj’(TT

+1

J+1 J

1

P
- tj)(vj+1 - Vj)<1_

- s.)u,
J ]

- t.)u,
J) J

- s5.)v.,
J ]

- t.)v,
J ]

2 2
[(Xi - sj) + (Yi - tj) 1 - 2[(xi - Sj)(sj

- Ey)leyy

the following relations are

P
-u,)]l—
J Ij
- u,)]l—
J Ij
- v.)]EL'
1,

J
- v.,)]l—
J lj

(A11)

(a12)

(A13)

(A14)

(A15)

(A16)

(A17)



By defining

APPENDIX

—uj(xi - sj)
—vj(xi sj)
"uj (Yi - tj)
(sj+1 - sj)uj - (x, - sj)(uj+1 - u,)
1.
(sj+1 - sj)vj - (x, - sj)(vj+1 - v.)
1.
(t. - t. ., - . = t. . - .
35+1 J)uJ (y J)(uj+1 UJ)
1.
(tj+1 - tj)vj - (y, - tj)(vj+1 - Vj)
1.
J
(8541 78500y - vy
2
1
J
A Y
(sj+1 - s )(vj+1 - v.)
2
1,
J
(tj+1 - tj)(uj+1 - u.)
2
1.
]
(tj+1 - tj)(vj+1 - vj)
2
1,
J

(a18a)

(A18b)

(A18c)

(a184)

(A18e)

(a18f£)

(A18g)

(A18h)

(a181)

(r183)

(A18k)

(A181)
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D (x, - s.)2 + (y, - t,)2 (A18m)
1 i j i Jj
2
- — - 5, . = 8,) + (t, - t, . ~ t, A18
D, Ij[(sj+1 SJ)(x1 s]) ( 341 J)(yl J)] ( n)
S. - s
E i1 3 (A180)
1 1.
J
t. -t
J+1 J
E2 = (A18p)
J
BAp = By + Ay (a18q)
Bp = B, + By (A18r)
Cp = Cy + C3 (A18s)
Ap = Ay - Ay (a18t)
B, B, - By (A18u)
CD C1 - C4 (a18v)
the integrals in equations (A1) and (A2) are rewritten as
, & 'y A, + BP + CPP2 Yy Aj+ BP+ CDP2
ulx,,y;) = - — Y| E® 5~ dP ~ E ® —— ap (a19)
j= + D
=1 0 D, P+ P 0 D+ D,P + P
and
, & Y AL+ BP + CDP2 Y4 A, + BP + cPP2
v(xi,yi) = E1CP —5— dpP + E2 P 5 4ap (a20)
=1 0 D, + D2P + P 0 D, + D,P + P
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The integrals in equations (A19) and (A20) are of the form

1.
f3A+B1>+CP2

dp = AI, + BI_ + CI (A21)
0O D. +D.P + p° 1 2 3
1 2
where
1.
3
4a
11 = 3 3 (a22)
D. + + P
0 1 sz
1.
j
0 D, + D,P + P
1.
j 2
0 D, + D,P + P
Thus,
1 n
= —_ B -
u(x, ,y,) ~ Z_: (B (A I, + oI, + CpIg) - E (A I, + B bI, + CpIy)]  (A25)
and
1 n
= B
vz 0y;) = — ; [E,(AQT, + BT, + C I.) + E, (AT, + B,I, + CpIy)] (A26)

When using the integral tables for evaluating the integrals in equations (A22),
(A23), and (A24), care must be taken to choose the appropriate integration formula.
This requires examination of the sign and value of the quantity q, which is defined
as

2
q = 4D1 - D2
=S fx, - st -t - (y, -~ t. ) s, . - 512 (A27)
12 +1 3 i 3 J+1 3
3
Therefore,
qg >0 (n28)
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By using the integral tables of reference 26, the following equations can be
written: For q > O,

1w\
2 -1 Jj
I =<2 tan |[—"— (a29)
2D, + 1.,D
1 Na 1 13 2
1 D1 + D21j + 1§ D2
12=—2-1n D1 -2—11 (A30)
I3 = 1j - D212 - D1I1 (A31)
If
2
q = 4D1 - D2 = 0
th
en 2
D
o, - (22
1 2
which gives
'y
—\—+
2 \2 Y
D
2—2'+ Ij D2
I, =1Iln=F— -5 I, (A33)
_2
2
D2 2
13 = 1j - D212 -\5 I, (A34)

Examination of the integral expressions given in equations (A1) and (A2) or
(219) and (A20) shows that a singularity exists along the strip containing the point
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r2=00
integral must
be seen that

Along this portion of the contour,

APPENDIX

then, the Cauchy principal part of the

be used. By considering the geometry as shown in figure 16(b), it can

S. - S,
& _"i#1 J _
r = w =B (a35)
J
f
t. - t.
1 mn_ i+ J _
r . = E, (A36)
J
The integrals along the strip containing the singqularity are then rewritten as
S. t.
1 J+1 uE2 + VE1 1 J+1 uE1 - vE2
u=——‘PI —————ds +-—q’f dt (A37)
T r b8 r
S. t.
J J
and
S. t.
1 J+1 uE1 - VE2 1 L "I+ uE2 + VE1
vV=—©® ds +—P —L  at (A38)
T r T r
S, t,
J J
by using the notation shown in figure 16(c), which has P. and Py, at the ends of
the strip, P' as the running point along the strip, and Pé as %he location of the
singularity. Then,
r = pP' - P!
c
. = P' - P, -~ P' +P
! i T e S
= (P' = P,) - (P' -~ P,
) (p j) ( o PJ)

or, according

Lospes =

to previous usage,

(A39)
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The singular-strip integrals in equations (A37) and (A38) are then rewritten with the
aid of equations (A7) to (A10) and (A39) as

P
] vy ot (vj+1 VJ)T._
u =-—® s .3 ap (A40)
T 0 o]
and
P
1. u, + (u, - u,)—
1 fj j j+ 3Ty
v, =_1_rcp T dap (241)
0 c

The integrands of equations (A40) and (A41) are rewritten, respectively, as

V. - V. V. - V.
J+1 J 1 J+1 Jj
vj + Pc 1. P-P + 1, (n42)
J c 3
and
Yy ~ uj\ 1 Yip1 T Yy
u. + P + (n43)
Jj c 1. P-P 1.
J / c J

Then, by substituting equations (A42) and (A43) into (A40) and (A41), the integrals
become

1 1z
v, - V. 3 V. - v, 3
a =Ml 49 _J+_1_J<pf dp__ 3+ Jf ap (na4)
c T J c 1. 0 P-P 1. 0

and

1. 1
u, - u, J u, - u, j
_1 J+1 3 f ap j+1 jf
Ve =% [Cuj + Pc-———;;———)P —7p t - A dp (A45)

The singularity now occurs in the first integral of each of equations (A44) and
(A45). These are evaluated by taking the limits around Pc of
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P ~-¢ 1z _
1i f <, f o_ap |_ 1nu (n46)
n P-P_|" P

e»0 \"0 P +¢
c

Substituting equation (A46) into (A44) and (B45) gives, respectively,

(B47)

=]
Q
I
|
al=
<
[}
+
L]
Q
<
w
+
- | -
[}
<
.
'—l
=]
AN
~
.
L]
!
L]
Q
N——
+
<
.
+
-
1
<
J.

and

1 . (u, -u,) (a48)
c n J c 1 P J+1
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Figure 1.- Contour used for evaluation of equation (7).
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Figure 6.- Convergence of force coefficients of an NACA 0012 airfoil at an angle of
attack of 3°,
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Figqure 7.- Schematic drawing of flexible-wall tunnel.

Dimensions are in inches.
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Figure 8.~ Tunnel-empty flexible-wall calibration for diverged and undiverged
walls. M = 0.71.
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Figure 9.- Tunnel-empty flexible-wall calibration for diverged walls.
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Figure 10.- Viscous corrections. M_ = 0.767,.
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Figure 11.- Comparison of airfoil pressures with viscous corrections to flexible
walls at M_ = 0.77.
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Figure 12.- Comparison of flexible-wall iterative locations at M, = 0.77.
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Figure 13.- Comparison of iterative airfoil pressure distributions,
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Figure 14,- Comparison of final results with Newman-Anderson theory (refs. 24 and 25) for an NACA 0012 airfoil.

M, = 0.77; Rgpopg = 3-07 x 10°.
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Figqure 15.- Comparison of final airfoil results with Osborne's experimental data
for an NACA 0012 airfoil., M_ = 0.767; R hord = 3.07 x 10°.
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Figure 16.- Wind-tunnel wall and nomenclature.

45



1. Report No. 2. Government Accession No. 3. Recipienf's Catalog No. )
NASA TP-2081 ) o

4. Title and Subtitle ) 5. Report Date

A METHOD FOR MODIFYING TWO-DIMENSIONAL ADAPTIVE February 1983

WIND-TUNNEL WALLS INCLUDING ANALYTICAL AND 6. Performing Organization Code
EXPERIMENTAIL, VERIFICATION 505-31-33-09

7. Author(s) 8. Performing Organization Report No.
Joel L. Everhart I~15491

10. Work Unit No.

NASA Langley Research Center 11. Contract or Grant No.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration

. 14. Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

This work was initiated while the author was a graduate research scholar assistant in
The George Washington University Joint Institute for Advancement of Flight Sciences.

16. Abstract

The theoretical development of a simple and consistent method for removing the inter-
ference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation

of the velocities in an imaginary infinite extension of the real wind-tunnel flow is
obtained and evaluated on a closed contour dividing the real and imaginary flow.

The contour consists of the upper and lower effective wind-tunnel walls (wall plus
boundary-layer displacement thickness) and upstream and downstream boundaries
perpendicular to the axial tunnel flow. The resulting integral expressions for the
streamwise and normal perturbation velocities on the contour are integrated by assum-
ing a linear variation of the velocities between data-measurement stations along the
contour. In an iterative process, the velocity components calculated on the upper
and lower boundaries are then used to correct the shape of the wall to remove the
interference, Convergence of the technique is shown numerically for the cases of a
circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible
flow. Experimental convergence at a transonic Mach number is demonstrated by using
an NACA 0012 airfoil at zero 1lift,

17. Key Words (Suggested by Authoris)) 18. Distribution Statement

Wind tunnels Unclassified - Unlimited
Wall interference

Adaptive wind-tunnel walls
Transonic flow

Cauchy integral formula Subject Category 09
19. Security Classif. (of this report) 20. Security;CIassif. {of this page) 21. No. of l;ages 22, Price T h
Unclassified Unclassified 46 AO03

For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA-Langley, 1983



National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business
Penalty for Private Use, $300

NNASA

THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and
Space Administration

NASA-451

L)% I 1U, A,
Vi OF TdZ ATy Foqce
?‘Jﬁ}‘/'{snxﬁ();“d‘s LA,A")M\LS:?

ATTA: [ECh i onL o -
I(I‘L{L‘L/\ N s /\ %;’_.}M/\.\{ (:)L)L)

1

POSTMASTER:

c30218 S2090308

If Undeliverable (Section 158
Postal Manual) Do Not Return

S i o
hat .

sz

|
|




